Usine de machines de précision NaN Jingjiang Ningshu N Taiwan
Recherche
Maison

Recherche

  • Comment fonctionnent les vis à billes utilisées dans les machines de moulage par injection ?
    Oct 31, 2025
    La vis à billes (souvent appelée « vis à billes ») vis") d'une machine à mouler par injection Il s'agit de son composant principal, souvent appelé le « cœur » de la machine. Son fonctionnement est un processus complexe intégrant la physique, la mécanique et la thermodynamique.En termes simples, sa tâche principale consiste à transporter, faire fondre, comprimer et homogénéiser des granulés de plastique solide, pour finalement injecter le plastique fondu dans la cavité du moule avec une pression et une vitesse suffisantes.Pour mieux comprendre son fonctionnement, on peut diviser son cycle de travail en plusieurs étapes : un cycle de travail complet d’une vis à billes de machine à mouler par injection. Lors d'un cycle d'injection complet, la vis à billes effectue principalement deux actions : une rotation et un déplacement axial. Son cycle de fonctionnement peut être divisé en trois étapes :1. Étape de rotation (plastification/dosage)Objectif : Transporter, chauffer, faire fondre et homogénéiser les granulés de plastique solide dans la trémie.Action : La vis mère tourne à grande vitesse à l'intérieur du cylindre mais n'avance pas (à ce moment-là, le cylindre d'injection à l'arrière de la vis mère relâche la pression, permettant à la vis mère de se rétracter grâce à la force de réaction du plastique pendant la rotation).Processus opérationnel :Alimentation et transport : les granulés de plastique tombent de la trémie dans le tambour. La rotation de la vis sans fin, à l’instar d’une vis dans un écrou, utilise le plan incliné du filetage pour propulser continuellement les granulés de plastique vers l’avant.Compression et fusion : La structure de la vis est divisée en trois sections de l'arrière vers l'avant : la section d'alimentation, la section de compression et la section de dosage.Section d'alimentation : La profondeur du filetage est relativement importante, principalement utilisée pour le transport stable de granulés solides.Section de compression : La profondeur du filetage diminue progressivement. Le plastique est alors fortement comprimé et cisaillé, tandis que la résistance chauffante extérieure au cylindre contribue également à son chauffage. Sous l’action combinée de la chaleur de cisaillement et du chauffage externe, le plastique solide fond rapidement et devient un fluide visqueux. En réalité, plus de 80 % de la chaleur de fusion provient de la chaleur de cisaillement générée par la rotation de la vis.Section de dosage : La profondeur du filetage y est minimale. Sa fonction principale est d’homogénéiser davantage la température et la composition du bain de fusion, garantissant ainsi la qualité uniforme du bain stocké en amont.Résultat : Le plastique fondu uniformément est poussé vers l'avant de la vis (au niveau de la buse), et la pression accumulée (contre-pression) repousse toute la vis vers l'arrière, réservant une quantité fixe de matériau fondu pour la prochaine injection.2. Phase de mouvement axial (pression d'injection/de maintien)Objectif : Injecter le plastique fondu mis de côté à l'étape précédente dans la cavité du moule à grande vitesse et à haute pression.Action : La vis cesse de tourner et, sous l'effet de la puissante poussée du cylindre d'injection, se déplace vers l'avant à grande vitesse comme un piston.Processus opérationnel :Injection : La vis avance à très grande vitesse, injectant le plastique fondu stocké à l’avant par la buse, le canal d’alimentation et l’orifice d’injection dans la cavité fermée du moule. Ce processus doit être réalisé très rapidement afin que le matériau fondu remplisse simultanément chaque recoin de la cavité.Pression de maintien : Lorsque la cavité est sur le point d’être remplie, la vitesse d’injection diminue, passant à une phase de « pression de maintien » à haute pression. La vis continue d’avancer lentement, exerçant une pression extrêmement élevée pour compenser le volume libéré par le refroidissement et le retrait du plastique, évitant ainsi les défauts tels que les marques de retrait et les manques de matière dans le produit.3. Réinitialisation (Préparation du cycle suivant)Objectif : Préparer la matière fondue pour le prochain cycle de moulage par injection.Action : Une fois la pression de maintien atteinte, la vis cesse son mouvement axial et se remet à tourner (retour à la première étape) pour la plastification et le dosage suivants. Le moule s’ouvre alors, éjecte le produit, puis se referme, en attendant la prochaine injection.Caractéristiques principales de conception de la vis à billesPour accomplir ces tâches complexes, la vis à billes elle-même est conçue avec une grande précision :Rapport longueur/diamètre (L/D) : rapport entre la longueur et le diamètre de la vis à billes. Un rapport L/D élevé favorise une meilleure plastification et une température plus uniforme. Les valeurs courantes se situent entre 18:1 et 25:1.Taux de compression : Rapport entre le volume de la première rainure filetée de la section d’alimentation et celui de la dernière rainure filetée de la section de dosage. Il détermine le degré de compression du plastique et est essentiel à l’efficacité de la fusion. Différents plastiques requièrent différents taux de compression.Conception en trois étapes : comme mentionné ci-dessus, la section d’alimentation, la section de compression et la section de dosage remplissent chacune leurs fonctions respectives, constituant ainsi la base du fonctionnement efficace de la vis-mère.En résumé, le fonctionnement d'une vis de machine à mouler par injection peut se visualiser comme suit :C'est comme un « hachoir à viande » : en tournant, il broie, coupe, mélange et transporte les matières.C'est comme un « piston » ou une « seringue » : en se propulsant vers l'avant, il injecte le « fluide » traité sous haute pression.C'est aussi un « générateur de chaleur » : grâce à son propre cisaillement rotationnel, il génère la majeure partie de la chaleur nécessaire pour faire fondre le plastique.Cette combinaison ingénieuse de « plastification rotationnelle » et d’« injection axiale » permet à la vis de la machine de moulage par injection de réaliser efficacement et précisément le processus de transformation des granulés solides en produits plastiques de précision.
    EN SAVOIR PLUS
  • Analysis of the Motion Principle and Selection Guide for Trapezoidal Lead Screws
    Dec 12, 2025
    In industrial automation and precision equipment, trapezoidal lead screws are the core transmission mechanism for achieving rotary-to-linear motion, directly affecting the accuracy and stability of the equipment. However, practitioners often suffer from decreased equipment efficiency and shortened lifespan due to a lack of in-depth understanding of the principles and improper selection. This article will break down the motion principle of trapezoidal lead screws and provide a practical selection guide. I. Product Motion Principle and Related Parameters 1. Motion Principle: The trapezoidal lead screw converts rotational motion into linear motion through the meshing of the screw and nut, simultaneously transmitting energy and power. II. Product Features 1. Simple structure, convenient processing and operation, and economical cost; 2. Self-locking function is achieved when the thread helix angle is less than the friction angle; 3. Smooth and stable transmission process; 4. Relatively high frictional resistance, with a transmission efficiency in the range of 0.3~0.7. In self-locking mode, the efficiency is below 0.4; 5. Possesses a certain degree of impact and vibration resistance; 6. Overall load capacity is stronger than that of ordinary rolling screws. III. Selection and Verification Calculations For general force-transmitting screws, the main failure modes are thread surface wear, fracture under tensile stress, shearing, and shearing or bending at the thread root. Therefore, the main dimensions of the screw drive are determined primarily based on wear resistance and strength calculations during design. For transmission screws, the main failure mode is excessive clearance due to wear or deformation leading to decreased motion accuracy. Therefore, the main dimensions of the screw drive should be determined based on thread wear resistance and screw stiffness calculations during design. If the transmission screw also bears a large axial load, its strength needs to be additionally calculated. Long screws (slenderness ratio exceeding 40) that are not manually adjustable may produce lateral vibration; therefore, their critical speed needs to be checked. IV. Usage Precautions 1. Load Considerations: Additional radial loads should be avoided as much as possible, as such loads can easily cause screw malfunction, increased wear, and jamming. 2. Dust Prevention Requirements: Foreign objects must be prevented from entering the thread. If impurities such as iron filings, tin dross, and aluminum shavings are easily generated under operating conditions, a protective cover should be installed to prevent foreign objects from entering the thread and causing abnormal wear or jamming. 3. Slenderness ratio requirement: When the slenderness ratio exceeds a certain range (60 or above), the screw will bend due to its own weight, resulting in radial off-center load on the nut. Depending on the actual operating speed and torque, this may lead to abnormal wear, jamming, shaft end bending, or even breakage. To solve this problem, an anti-runout device can be installed in the middle of the screw for constraint. 4. During installation, attention should be paid to the coaxiality and levelness calibration of the fixed-support installation method; for the fixed-free cantilever structure, attention should be paid to the control of shaft end tolerances and the locking and reinforcement of the head. 5. When installing a trapezoidal thread screw, runout verification must be performed. If suitable measuring equipment is lacking, the screw can be moved by hand along its entire length once or multiple times before installing the driving component. If the force required to move the outer diameter of the shaft is uneven and accompanied by wear marks, it indicates that the lead screw, nut support, and guide rail are not aligned. In this case, first loosen the relevant mounting screws, and then move the lead screw by hand once. If the required force becomes uniform at this time, the corresponding components can be recalibrated. If the force is still uneven, the mounting screws need to be loosened again to determine the location of the calibration error.
    EN SAVOIR PLUS

laisser un message

laisser un message
Si vous êtes intéressé par nos produits et souhaitez en savoir plus, veuillez laisser un message ici, nous vous répondrons dès que possible.
soumettre

Maison

Des produits

whatsApp

contact